Vojo Deretic

Vojo Deretic, Ph.D.
Known forAutophagy

Vojo Deretic, is distinguished professor and chair of the Department of Molecular Genetics and Microbiology at the University of New Mexico School of Medicine. Deretic was the founding director of the Autophagy, Inflammation and Metabolism (AIM) Center of Biomedical Research Excellence.[1][2] The AIM center promotes autophagy research nationally and internationally.

Education

Deretic received his undergraduate, graduate and postdoctoral education in Belgrade, Paris, and Chicago. He was a faculty member at the University of Texas, University of Michigan, and joined University of New Mexico Health Sciences Center in 2001.[3]

Career and research

Deretic’s research focuses on autophagy in infection and immunity.[4][5] Autophagy, a cytoplasmic pathway for quality control and metabolism,[6] removes damaged organelles and has been linked to cancer, neurodegeneration, diabetes, development, and aging. His team helped show[7] that autophagic degradation eliminates intracellular microbes, including Mycobacterium tuberculosis,[8][9][10] supporting roles in innate and possibly adaptive immunity.[5]

Studies from his lab defined basic and immune-specialized autophagy mechanisms,[11] including HyPAS prophagophores formed by fusion of ATG16L1+ endosomes with cis-Golgi–derived FIP200 membranes, and their conversion to LC3+ phagophores via atg8ylation.[11][6][12] They further showed that atg8ylation and mATG8s recruit ESCRTs to seal phagophores and maintain nonporous autophagosomal membranes.[13][13]

The link between autophagy’s quality-control and innate immunity functions likely reflects endosymbiotic origins of mitochondria.[14] Autophagy and non-canonical, atg8ylation-linked processes limit microbes but are pathogen targets,[15] as shown by SARS-CoV-2 inhibition of HyPAS formation.[11]

His group connected autophagy to TLRs,[16] TBK1,[17] immunity-related GTPases[7] such as IRGM[18] and TRIMs including TRIM5,[19] TRIM16,[20] PYRIN/TRIM20, and TRIM21, which act as autophagic receptor-regulators.[21][22][19][23][24] Their studies further showed how IRGM assembles core ATG factors and recruits SNARE Syntaxin 17; TBK1 phosphorylates Syntaxin 17 to control autophagy initiation, and both IRGM and Syntaxin 17 bind ATG8s.[18][25][26][27][28][27] They showed that IRGM and mammalian Atg8s regulate lysosomal biogenesis and control mTOR and TFEB.[29]

A recent review proposed membrane “atg8ylation” as a general stress/remodeling response,[15] with mATG8–SNARE interactions expanded to drive lysosome biogenesis via a TGN-lysosome route.[30] These studies suggest mATG8s redirect membrane flow toward the lysosomal–autolysosomal system and help close autophagosomes via ESCRTs.[29][30][13] Deretic and Lazarou reviewed the broader atg8ylation model and immune implications,[12] including mTOR inactivation, stress-granule formation, translational control, and the integrated stress response during lysosomal damage.[12][31]

Work from the AIM Center[1] detailed how cells sense and repair membrane damage: GALTOR (galectin-8–mTOR) links endomembrane damage to autophagy,[32] galectin-3 recruits ESCRTs for lysosome repair,[33] and galectin-9 activates AMPK via K63-ubiquitination of TAK1.[34][34] They also showed ATG9A with IQGAP1 mobilizes ESCRTs to protect the plasma membrane from pores formed by GSDMD, MLKL, M. tuberculosis, and SARS-CoV-2 ORF3a,[35][35] and that ATG5 tunes the atg8ylation cascade between autophagy and secretion.[36]

The lab also showed that autophagy mediates unconventional secretion (“secretory autophagy”) of cytosolic proteins, including IL-1β,[37][22][38][39] extending autophagy’s effects to extracellular signaling and inflammation.

Autophagy and coronavirus biology intersect: SARS-CoV-2 inhibits HyPAS,[11] ATG9A protects from ORF3a-induced plasma-membrane damage,[35] and earlier airway-epithelium work explained chloroquine-like actions on inflammation and fibrosis.[40][41][42] Preprints reported chloroquine-like effects of azithromycin/ciprofloxacin and activity of ciprofloxacin (and ambroxol) against SARS-CoV-2 in Vero E6 cells.[43][44]

A comprehensive review summarized autophagy in immunity and inflammation,[4] and a later review in Immunity surveyed disease links from infection (including COVID-19) to cancer, cardiovascular and liver disease, neurodegeneration, diabetes and metabolic disorders.[5]

Early publications include Cell[45] and Science.[46] Recent primary publications include Cell,[11] Molecular Cell,[47][34] Developmental Cell,[28][33][36] Journal of Cell Biology[27] and Nature Cell Biology.[29][35]

See also

References

  1. ^ a b "Home | Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence". www.autophagy.center. Retrieved 2025-08-14.
  2. ^ Vojo, Deretic. "Autophagy, Inflammation and Metabolism (AIM) in Disease Center". Grantome.
  3. ^ "Vojo Deretic". hsc.unm.edu. Retrieved 2025-08-14.
  4. ^ a b Deretic, Vojo; Saitoh, Tatsuya; Akira, Shizuo (October 2013). "Autophagy in infection, inflammation and immunity". Nature Reviews Immunology. 13 (10): 722–737. doi:10.1038/nri3532. PMC 5340150. PMID 24064518.
  5. ^ a b c Deretic, Vojo (March 2021). "Autophagy in inflammation, infection, and immunometabolism". Immunity. 54 (3): 437–453. doi:10.1016/j.immuni.2021.01.018. PMC 8026106. PMID 33691134.
  6. ^ a b Deretic, Vojo; Kroemer, Guido (22 June 2021). "Autophagy in metabolism and quality control: opposing, complementary or interlinked functions?". Autophagy. 18 (2): 283–292. doi:10.1080/15548627.2021.1933742. PMC 8942406. PMID 34036900. S2CID 235199344.
  7. ^ a b Gutierrez, M. G.; Master, S. S.; Singh, S. B.; Taylor, G. A.; Colombo, M. I.; Deretic, V. (2004). "Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages". Cell. 119 (6): 1–20. CiteSeerX 10.1.1.495.3789. doi:10.1016/j.cell.2004.11.038. PMID 15607973. S2CID 16651183.
  8. ^ Castillo, E. F.; Dekonenko, A.; Arko-Mensah, J.; Mandell, M.A.; Dupont, N.; Jiang, S.; Delgado-Vargas, M.; Timmins, G.S.; Bhattacharya, D.; Yang, H.; Hutt, J.; Lyons, C.; Dobos, K. M.; Deretic, V. (2012). "Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation". Proc. Natl. Acad. Sci. USA. 109 (46): E3168–3176. doi:10.1073/pnas.1210500109. PMC 3503152. PMID 23093667.
  9. ^ Deretic, V; Kimura, T; Timmins, G; Moseley, P; Chauhan, S; Mandell, M (Jan 2015). "Immunologic manifestations of autophagy". J Clin Invest. 125 (1): 75–84. doi:10.1172/JCI73945. PMC 4350422. PMID 25654553.
  10. ^ Deretic, Vojo; Wang, Fulong (2023-05-04). "Autophagy is part of the answer to tuberculosis". Nature Microbiology. 8 (5): 762–763. doi:10.1038/s41564-023-01373-3. ISSN 2058-5276. PMC 10636698. PMID 37142685.
  11. ^ a b c d e Kumar, Suresh; Javed, Ruheena; Mudd, Michal; Pallikkuth, Sandeep; Lidke, Keith A.; Jain, Ashish; Tangavelou, Karthikeyan; Gudmundsson, Sigurdur Runar; Ye, Chunyan; Rusten, Tor Erik; Anonsen, Jan Haug (November 2021). "Mammalian hybrid pre-autophagosomal structure HyPAS generates autophagosomes". Cell. 184 (24): 5950–5969.e22. doi:10.1016/j.cell.2021.10.017. PMC 8616855. PMID 34741801.
  12. ^ a b c Deretic, Vojo; Lazarou, Michael (2022-06-14). "A guide to membrane atg8ylation and autophagy with reflections on immunity". Journal of Cell Biology. 221 (7): e202203083. doi:10.1083/jcb.202203083. ISSN 0021-9525. PMC 9202678. PMID 35699692. S2CID 249644004.
  13. ^ a b c Javed, Ruheena; Jain, Ashish; Duque, Thabata; Hendrix, Emily; Paddar, Masroor Ahmad; Khan, Sajjad; Claude-Taupin, Aurore; Jia, Jingyue; Allers, Lee; Wang, Fulong; Mudd, Michal; Timmins, Graham; Lidke, Keith; Rusten, Tor Erik; Akepati, Prithvi Reddy (2023-06-05). "Mammalian ATG8 proteins maintain autophagosomal membrane integrity through ESCRTs". The EMBO Journal. 42 (14): e112845. doi:10.15252/embj.2022112845. ISSN 0261-4189. PMC 10350836. PMID 37272163.
  14. ^ Deretic, Vojo (2010-06-23). "Autophagy of intracellular microbes and mitochondria: two sides of the same coin?". F1000 Biology Reports. 2. doi:10.3410/B2-45. PMC 2950027. PMID 20948788.
  15. ^ a b Kumar, Suresh; Jia, Jingyue; Deretic, Vojo (13 September 2021). "Atg8ylation as a general membrane stress and remodeling response". Cell Stress. 5 (9): 128–142. doi:10.15698/cst2021.09.255. PMC 8404385. PMID 34527862.
  16. ^ Delgado, Mónica A; Elmaoued, Rasha A; Davis, Alexander S; Kyei, George; Deretic, Vojo (9 April 2008). "Toll-like receptors control autophagy". The EMBO Journal. 27 (7): 1110–1121. doi:10.1038/emboj.2008.31. PMC 2323261. PMID 18337753.
  17. ^ Pilli, Manohar; Arko-Mensah, John; Ponpuak, Marisa; Roberts, Esteban; Master, Sharon; Mandell, Michael A.; Dupont, Nicolas; Ornatowski, Wojciech; Jiang, Shanya; Bradfute, Steven B.; Bruun, Jack-Ansgar; Hansen, Tom Egil; Johansen, Terje; Deretic, Vojo (August 2012). "TBK-1 Promotes Autophagy-Mediated Antimicrobial Defense by Controlling Autophagosome Maturation". Immunity. 37 (2): 223–234. doi:10.1016/j.immuni.2012.04.015. PMC 3428731. PMID 22921120.
  18. ^ a b Singh, S.B.; Davis, A.; Taylor, G. A.; Deretic, V. (2006). "Human IRGM Induces Autophagy to Eliminate Intracellular Mycobacteria". Science. 313 (5792): 1438–1441. Bibcode:2006Sci...313.1438S. doi:10.1126/science.1129577. PMID 16888103. S2CID 2274272.
  19. ^ a b Mandell, M; Jain, A.; Arko-Mensah, J.; Chauhan, S.; Kimura, T.; Dinkins, C.; Silvestri, G; Münch, J.; Kirchhoff, F.; Simonsen, A.; Wei, Y.; Levine, B.; Johansen, T.; Deretic, V. (2014). "TRIM Proteins Regulate Autophagy and Can Target Autophagic Substrates by Direct Recognition". Developmental Cell. 30 (4): 394–409. doi:10.1016/j.devcel.2014.06.013. PMC 4146662. PMID 25127057.
  20. ^ Chauhan, Santosh; Kumar, Suresh; Jain, Ashish; Ponpuak, Marisa; Mudd, Michal H.; Kimura, Tomonori; Choi, Seong Won; Peters, Ryan; Mandell, Michael; Bruun, Jack-Ansgar; Johansen, Terje; Deretic, Vojo (October 2016). "TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin-3 Co-direct Autophagy in Endomembrane Damage Homeostasis". Developmental Cell. 39 (1): 13–27. doi:10.1016/j.devcel.2016.08.003. PMC 5104201. PMID 27693506.
  21. ^ Kimura, Tomonori; Mandell, Michael; Deretic, Vojo (2016-03-01). "Precision autophagy directed by receptor regulators – emerging examples within the TRIM family". Journal of Cell Science. 129 (5): 881–891. doi:10.1242/jcs.163758. ISSN 1477-9137. PMC 6518167. PMID 26906420.
  22. ^ a b Kimura, Tomonori; Jia, Jingyue; Kumar, Suresh; Choi, Seong Won; Gu, Yuexi; Mudd, Michal; Dupont, Nicolas; Jiang, Shanya; Peters, Ryan (4 January 2017). "Dedicated SNAREs and specialized TRIM cargo receptors mediate secretory autophagy". The EMBO Journal. 36 (1): 42–60. doi:10.15252/embj.201695081. ISSN 1460-2075. PMC 5210154. PMID 27932448.
  23. ^ Kimura, A. Jain A; Choi, S.W.; Mandell, M.A.; Schroder, K.; Johansen, T.; Deretic, V. (2015). "TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity". J. Cell Biol. 210 (6): 973–989. doi:10.1083/jcb.201503023. PMC 4576868. PMID 26347139.
  24. ^ Chauhan, Santosh; Kumar, Suresh; Jain, Ashish; Ponpuak, Marisa; Mudd, Michal H.; Kimura, Tomonori; Choi, Seong Won; Peters, Ryan; Mandell, Michael (10 October 2016). "TRIMs and Galectins Globally Cooperate and TRIM16 and Galectin-3 Co-direct Autophagy in Endomembrane Damage Homeostasis". Developmental Cell. 39 (1): 13–27. doi:10.1016/j.devcel.2016.08.003. ISSN 1878-1551. PMC 5104201. PMID 27693506.
  25. ^ Singh, S. B.; Ornatowski, W.; Vergne, I.; Naylor, J.; Delgado, M.; Roberts, E.; Ponpuak, M.; Master, S.; Pilli, M.; White, E.; Komatsu, M.; Deretic, V. (2010). "Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria". Nat Cell Biol. 12 (12): 1154–1165. doi:10.1038/ncb2119. PMC 2996476. PMID 21102437.
  26. ^ Chauhan, S.; Mandell, M.; Deretic, V. (2015). "IRGM Governs the Core Autophagy Machinery to Conduct Antimicrobial Defense". Molecular Cell. 58 (3): 507–521. doi:10.1016/j.molcel.2015.03.020. PMC 4427528. PMID 25891078.
  27. ^ a b c Kumar, Suresh; Jain, Ashish; Farzam, Farzin; Jia, Jingyue; Gu, Yuexi; Choi, Seong Won; Mudd, Michal H.; Claude-Taupin, Aurore; Wester, Michael J. (2018-02-02). "Mechanism of Stx17 recruitment to autophagosomes via IRGM and mammalian Atg8 proteins". The Journal of Cell Biology. 217 (3): 997–1013. doi:10.1083/jcb.201708039. ISSN 1540-8140. PMC 5839791. PMID 29420192.
  28. ^ a b Kumar, Suresh; Gu, Yuexi; Abudu, Yakubu Princely; Bruun, Jack-Ansgar; Jain, Ashish; Farzam, Farzin; Mudd, Michal; Anonsen, Jan Haug; Rusten, Tor Erik; Kasof, Gary; Ktistakis, Nicholas; Lidke, Keith A.; Johansen, Terje; Deretic, Vojo (April 2019). "Phosphorylation of Syntaxin 17 by TBK1 Controls Autophagy Initiation". Developmental Cell. 49 (1): 130–144.e6. doi:10.1016/j.devcel.2019.01.027. PMC 6907693. PMID 30827897.
  29. ^ a b c Kumar, Suresh; Jain, Ashish; Choi, Seong Won; da Silva, Gustavo Peixoto Duarte; Allers, Lee; Mudd, Michal H.; Peters, Ryan Scott; Anonsen, Jan Haug; Rusten, Tor-Erik; Lazarou, Michael; Deretic, Vojo (August 2020). "Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens". Nature Cell Biology. 22 (8): 973–985. doi:10.1038/s41556-020-0549-1. PMC 7482486. PMID 32753672. S2CID 220966510.
  30. ^ a b Gu, Yuexi; Princely Abudu, Yakubu; Kumar, Suresh; Bissa, Bhawana; Choi, Seong Won; Jia, Jingyue; Lazarou, Michael; Eskelinen, Eeva-Liisa; Johansen, Terje; Deretic, Vojo (2019-10-18). "Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through SNAREs". The EMBO Journal. 38 (22): e101994. doi:10.15252/embj.2019101994. ISSN 0261-4189. PMC 6856626. PMID 31625181.
  31. ^ Jia, Jingyue; Wang, Fulong; Bhujabal, Zambarlal; Peters, Ryan; Mudd, Michal; Duque, Thabata; Allers, Lee; Javed, Ruheena; Salemi, Michelle; Behrends, Christian; Phinney, Brett; Johansen, Terje; Deretic, Vojo (2022-11-07). "Stress granules and mTOR are regulated by membrane atg8ylation during lysosomal damage". Journal of Cell Biology. 221 (11): e202207091. doi:10.1083/jcb.202207091. hdl:10037/28759. ISSN 0021-9525. PMC 9533235. PMID 36179369.
  32. ^ Jia, Jingyue; Abudu, Yakubu Princely; Claude-Taupin, Aurore; Gu, Yuexi; Kumar, Suresh; Choi, Seong Won; Peters, Ryan; Mudd, Michal H.; Allers, Lee (2018-04-05). "Galectins Control mTOR in Response to Endomembrane Damage". Molecular Cell. 70 (1): 120–135.e8. doi:10.1016/j.molcel.2018.03.009. ISSN 1097-4164. PMC 5911935. PMID 29625033.
  33. ^ a b Jia, Jingyue; Claude-Taupin, Aurore; Gu, Yuexi; Choi, Seong Won; Peters, Ryan; Bissa, Bhawana; Mudd, Michal H.; Allers, Lee; Pallikkuth, Sandeep; Lidke, Keith A.; Salemi, Michelle (December 2019). "Galectin-3 Coordinates a Cellular System for Lysosomal Repair and Removal". Developmental Cell. 52 (1): 69–87.e8. doi:10.1016/j.devcel.2019.10.025. ISSN 1534-5807. PMC 6997950. PMID 31813797.
  34. ^ a b c Jia, Jingyue; Bissa, Bhawana; Brecht, Lukas; Allers, Lee; Choi, Seong Won; Gu, Yuexi; Zbinden, Mark; Burge, Mark R.; Timmins, Graham; Hallows, Kenneth; Behrends, Christian; Deretic, Vojo (March 2020). "AMPK, a Regulator of Metabolism and Autophagy, Is Activated by Lysosomal Damage via a Novel Galectin-Directed Ubiquitin Signal Transduction System". Molecular Cell. 77 (5): 951–969.e9. doi:10.1016/j.molcel.2019.12.028. PMC 7785494. PMID 31995728.
  35. ^ a b c d Claude-Taupin, Aurore; Jia, Jingyue; Bhujabal, Zambarlal; Garfa-Traoré, Meriem; Kumar, Suresh; da Silva, Gustavo Peixoto Duarte; Javed, Ruheena; Gu, Yuexi; Allers, Lee; Peters, Ryan; Wang, Fulong; da Costa, Luciana Jesus; Pallikkuth, Sandeep; Lidke, Keith A.; Mauthe, Mario; Verlhac, Pauline; Uchiyama, Yasuo; Salemi, Michelle; Phinney, Brett; Tooze, Sharon A.; Mari, Muriel C.; Johansen, Terje; Reggiori, Fulvio; Deretic, Vojo (August 2021). "ATG9A protects the plasma membrane from programmed and incidental permeabilization". Nature Cell Biology. 23 (8): 846–858. doi:10.1038/s41556-021-00706-w. PMC 8276549. PMID 34257406.
  36. ^ a b Wang, Fulong; Peters, Ryan; Jia, Jingyue; Mudd, Michal; Salemi, Michelle; Allers, Lee; Javed, Ruheena; Duque, Thabata L.A.; Paddar, Masroor A.; Trosdal, Einar S.; Phinney, Brett; Deretic, Vojo (April 2023). "ATG5 provides host protection acting as a switch in the atg8ylation cascade between autophagy and secretion". Developmental Cell. 58 (10): 866–884.e8. doi:10.1016/j.devcel.2023.03.014. PMC 10205698. PMID 37054706.
  37. ^ Dupont, N; Jiang, S; Pilli, M; Ornatowski, W; Bhattacharya, D; Deretic, V (Nov 2011). "Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β". EMBO J. 30 (23): 4701–11. doi:10.1038/emboj.2011.398. PMC 3243609. PMID 22068051.
  38. ^ Ponpuak, Marisa; Mandell, Michael A.; Kimura, Tomonori; Chauhan, Santosh; Cleyrat, Cédric; Deretic, Vojo (August 2015). "Secretory autophagy". Current Opinion in Cell Biology. 35: 106–116. doi:10.1016/j.ceb.2015.04.016. ISSN 1879-0410. PMC 4529791. PMID 25988755.
  39. ^ Claude-Taupin, Aurore; Jia, Jingyue; Mudd, Michal; Deretic, Vojo (2017-12-12). "Autophagy's secret life: secretion instead of degradation". Essays in Biochemistry. 61 (6): 637–647. doi:10.1042/EBC20170024. ISSN 1744-1358. PMID 29233874.
  40. ^ Poschet, J. F.; Boucher, J. C.; Tatterson, L.; Skidmore, J.; Van Dyke, R. W.; Deretic, V. (2001-11-20). "Molecular basis for defective glycosylation and Pseudomonas pathogenesis in cystic fibrosis lung". Proceedings of the National Academy of Sciences of the United States of America. 98 (24): 13972–13977. Bibcode:2001PNAS...9813972P. doi:10.1073/pnas.241182598. ISSN 0027-8424. PMC 61151. PMID 11717455.
  41. ^ Ornatowski, Wojciech; Poschet, Jens F.; Perkett, Elizabeth; Taylor-Cousar, Jennifer L.; Deretic, Vojo (November 2007). "Elevated furin levels in human cystic fibrosis cells result in hypersusceptibility to exotoxin A-induced cytotoxicity". The Journal of Clinical Investigation. 117 (11): 3489–3497. doi:10.1172/JCI31499. ISSN 0021-9738. PMC 2030457. PMID 17948127.
  42. ^ Perkett, Elizabeth A.; Ornatowski, Wojciech; Poschet, Jens F.; Deretic, Vojo (August 2006). "Chloroquine normalizes aberrant transforming growth factor beta activity in cystic fibrosis bronchial epithelial cells". Pediatric Pulmonology. 41 (8): 771–778. doi:10.1002/ppul.20452. ISSN 8755-6863. PMID 16779853. S2CID 42376196.
  43. ^ Poschet, Jens F.; Perkett, Elizabeth A.; Timmins, Graham S.; Deretic, Vojo (31 March 2020). "Azithromycin and ciprofloxacin have a chloroquine-like effect on respiratory epithelial cells". bioRxiv 10.1101/2020.03.29.008631.
  44. ^ Bradfute, Steven B; Ye, Chunyan; Clarke, Elizabeth C; Kumar, Suresh; Timmins, Graham S; Deretic, Vojo (11 August 2020). "Ambroxol and Ciprofloxacin Show Activity Against SARS-CoV2 in Vero E6 Cells at Clinically-Relevant Concentrations". bioRxiv 10.1101/2020.08.11.245100.
  45. ^ Gutierrez, Maximiliano G.; Master, Sharon S.; Singh, Sudha B.; Taylor, Gregory A.; Colombo, Maria I.; Deretic, Vojo (December 2004). "Autophagy Is a Defense Mechanism Inhibiting BCG and Mycobacterium tuberculosis Survival in Infected Macrophages". Cell. 119 (6): 753–766. doi:10.1016/j.cell.2004.11.038. PMID 15607973.
  46. ^ Singh, S. B.; Davis, A. S.; Taylor, G. A.; Deretic, V. (8 September 2006). "Human IRGM Induces Autophagy to Eliminate Intracellular Mycobacteria". Science. 313 (5792): 1438–1441. Bibcode:2006Sci...313.1438S. doi:10.1126/science.1129577. PMID 16888103. S2CID 2274272.
  47. ^ Jia, Jingyue; Abudu, Yakubu Princely; Claude-Taupin, Aurore; Gu, Yuexi; Kumar, Suresh; Choi, Seong Won; Peters, Ryan; Mudd, Michal H.; Allers, Lee; Salemi, Michelle; Phinney, Brett; Johansen, Terje; Deretic, Vojo (April 2018). "Galectins Control mTOR in Response to Endomembrane Damage". Molecular Cell. 70 (1): 120–135.e8. doi:10.1016/j.molcel.2018.03.009. PMC 5911935. PMID 29625033.