Thulium(III) sulfate
![]() | |
Identifiers | |
---|---|
| |
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.039.982 |
EC Number |
|
PubChem CID
|
|
UNII |
|
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
Tm2(SO4)3 | |
Molar mass | 626.04 g·mol−1 |
Density | 1.130 g/cm3 (25 °C)[1] |
160.32 g/L (25 °C)[1] | |
Hazards[2] | |
GHS labelling: | |
![]() | |
Warning | |
H315, H319, H335 | |
P261, P264, P264+P265, P271, P280, P302+P352, P304+P340, P305+P351+P338, P319, P321, P332+P317, P337+P317, P362+P364, P403+P233, P405, P501 | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
|
Thulium(III) sulfate is an inorganic compound of thulium, with the molecular formula Tm2(SO4)3.
It has received little scientific attention as its solubility in water was only determined in 2023[1] despite it being known since at least 1911.[3][4]
Preparation
Thulium(III) oxide has been reported to react with strong acids with hydrochloric acid being explicitly mentioned.[5] Sulfuric acid is also a strong acid that forms sulfate salts.[6]
- Tm2O3 + 3 H2SO4 → Tm2(SO4)3 + 3 H2O
Properties
Thulium sulfate can form an octahydrate.[7][8]
It can also be used as a dopant for e.g. lithium borate glass that contains copper nanoparticles in order to limit photo-darkening[9] or in thermoluminescent dosimeters.[10]
It undergoes ion exchange with barium bromate to yield thulium(III) bromate and barium sulfate which precipitates from the aqueous solution.[3]
- Tm2(SO4)3 + 3 Ba(BrO3)2 → 2 Tm(BrO3)3 + 3 BaSO4↓
References
- ^ a b c Judge, W.D.; Ng, K.L.; Moldoveanu, G.A.; Kolliopoulos, G.; Papangelakis, V.G.; Azimi, G. (2023). "Solubilities of heavy rare earth sulfates in water (gadolinium to lutetium) and H2SO4 solutions (dysprosium)". Hydrometallurgy. 218 106054. doi:10.1016/j.hydromet.2023.106054. Retrieved 2025-08-15.
- ^ "C&L Inventory". ECHA. Retrieved 2025-08-15.
- ^ a b James, C. (1911). "THULIUM I. 1" (PDF). Journal of the American Chemical Society. 33 (8): 1332–1344. Bibcode:1911JAChS..33.1332J. doi:10.1021/ja02221a007. ISSN 0002-7863. Retrieved 2025-08-15.
- ^ Das, Gaurav; Lencka, Malgorzata M.; Eslamimanesh, Ali; Wang, Peiming; Anderko, Andrzej; Riman, Richard E.; Navrotsky, Alexandra (2019). "Rare earth sulfates in aqueous systems: Thermodynamic modeling of binary and multicomponent systems over wide concentration and temperature ranges". The Journal of Chemical Thermodynamics. 131. Elsevier BV: 49–79. Bibcode:2019JChTh.131...49D. doi:10.1016/j.jct.2018.10.020. ISSN 0021-9614.
- ^ Mitrovic, I. Z.; Hall, S.; Althobaiti, M.; Hesp, D.; Dhanak, V. R.; Santoni, A.; Weerakkody, A. D.; Sedghi, N.; Chalker, P. R.; Henkel, C.; Dentoni Litta, E.; Hellström, P.-E.; Östling, M.; Tan, H.; Schamm-Chardon, S. (2015-06-03). "Atomic-layer deposited thulium oxide as a passivation layer on germanium". Journal of Applied Physics. 117 (21) 214104. AIP Publishing. Bibcode:2015JAP...117u4104M. doi:10.1063/1.4922121. ISSN 0021-8979. Retrieved 2025-08-15.
- ^ Housecroft, Catherine E.; Sharpe, A. G. (2005). Inorganic Chemistry. Harlow: Pearson Education. p. 171. ISBN 978-0-13-039913-7.
- ^ Berringer, B.W.; Gruber, J.B.; Karlow, E.A. (1972). "Far infrared spectra of hydrated and anhydrous tripositive thulium sulfate". Journal of Inorganic and Nuclear Chemistry. 34 (6): 2084–2086. doi:10.1016/0022-1902(72)80568-2. Retrieved 2025-08-15.
- ^ Karlow, E. A.; Gruber, J. B. (1971-11-15). "Optical and Magnetic Studies of Tripositive Thulium in Octahydrated Sulfate Crystals". The Journal of Chemical Physics. 55 (10): 4730–4744. Bibcode:1971JChPh..55.4730K. doi:10.1063/1.1675571. ISSN 0021-9606. Retrieved 2025-08-15.
- ^ Elias, Janet A.; Diaz-Torres, Luis A.; Gomez-Solis, Christian; Montes, Eduardo; Toscano, Gerardo; Vallejo, Miguel A. (2022). "Li2B4O7 glass exhibits photo-darkening suppression due to copper nanoparticles". Applied Physics A. 128 (3) 171. doi:10.1007/s00339-022-05310-9. ISSN 0947-8396. Retrieved 2025-08-15.
- ^ Kartikasari, D.; Zulys, A.; Hiswara, E.; Nuraeni, N. (2018). Synthesis of thermoluminescence dosimeter (TLD) using calcium sulfate (CaSO4) with variations of dysprosium (Dy) and thulium (Tm) dopants. AIP Conference Proceedings. Vol. 2023. p. 020084. doi:10.1063/1.5064081.