Soil animals
_-_40X_view.jpg)

Soil harbours a huge number of animal species (30% of arthropods live in soil), whether over their entire life or at least during larval stages.[1] Soil offers protection against environmental hazards, such as excess temperature and moisture fluctuations, in particular in arid and cold environments,[2] as well as against predation.[3] Soil provisions food over the year, especially since omnivory seems the rule rather than the execption,[4] and allows reproduction and egg deposition in a safe environment, even for those animals not currently living belowground.[5] Many soil invertebrates, and also some soil vertebrates, are tightly adapted to a subterranean concealed environment, being smaller, blind, depigmented, legfree or with reduced legs, and reproducing asexually,[6] with negative consequences on their colonization rate when the environment is changing at landscape scale.[7] It has been argued that soil could have been a crucible for the evolution of invertebrate terrestrial faunas, as an intermediary step in the transition from aquatic to aerial life.[8]
Soil fauna have been classified, according to increasing body size, in soil microfauna (20 μm to 200 μm), mesofauna (200 μm to 2 mm), macrofauna (2 mm to 2 cm) and megafauna (more than 2 cm).[9] The size of soil animals determines their place along soil trophic networks (soil foodwebs), bigger species eating smaller species (predator-prey interactions) or modifying their environment (nested ecological niches).[10] Among bigger species, soil engineers (e.g. earthworms, ants, termites, moles, gophers) play a prominent role in soil formation[11][12][13] and vegetation development,[14][15][16] giving them the rank of ecosystem engineers.
From a functional point of view soil animals are tightly interconnected with soil microorganisms (bacteria, archaea, fungi, algae).[17] Soil microorganisms provide food to saprophagous and microbivorous species,[18] and play a significant role in the digestion of recalcitrant compounds by saprophagous animals.[19] In turn, soil animals, even the tiniest ones, create environments, e.g. digestive tracts,[20] feces,[21] cavities,[22] favourable to soil microorganisms, allow their dispersal for those unable to move by their own means (e.g. non-motile bacteria),[23] and regulate their populations.[24]
The identification of soil animals, needing to be extracted (e.g. microarthropods, potworms, nematodes),[25] expelled (earthworms)[26], trapped (e.g. carabids)[27] or searched by hand (e.g. termites, ants, millipedes, woodlice)[28] before being observed under a dissecting, light microscope or electron microscope,[29] has slowed down the development of soil zoology compared to the aboveground. To a few exceptions (e.g. vertebrates) the identification of soil animals was only done by specialists, using various published or unpublished keys and their own collections. From a few decades on molecular tools such as DNA barcoding helped field ecologists to achieve complete lists of species or OTUs.[30] Such automated tools have been implemented in the study of nematodes,[31] protozoa,[32] and are still in development for other soil invertebrates such as earthworms and collembolans.[33] They will be most useful for giving us reliable estimates of soil biodiversity, taking into account the huge amount of cryptic species which cannot be identified by morphological criteria.[34]
Soil microfauna
Soil microfauna comprise unicellular (protozoa), and multicellular (nematodes, rotifers, tardigrades) organisms. By their small size (20 μm to 200 μm) they are able to move within mesopores (30–75 μm) and macropores (>75 μm) where they find microorganisms (for microbivorous species) or other microfauna (for predatory species) as food.[35] To the exception of resting stages (e.g. eggs, cysts, dauer larvae) microfauna are more often in tight contact with water films surrounding soil aggregates and roots (rhizoplane).[36] Microfauna are involved in strong interactions with soil microorganisms, together consuming and stimulating them by rejuvenating microbial colonies.[37] Through the excretion of nutrients in a plant-available form (e.g. ammonium) they contribute to plant nutrition.[38]
Although difficult to verify experimentally,[39] Clarholm's microbial loop hypothesis[40] explained how the growth of roots, when exploring a new environemnt, exerts a priming effect on quiescent soil bacteria which in turn are predated by naked amoeba, liberating nitrogen in a mineral form, further absorbed by root hairs, stimulating in turn the plant through a positive feedback process.[41]
Chemical signalling through the water film in which mesofauna are living (e. g. chemotaxis) is strongly involved in intra-species (pheromone)[42][43][44] and between-species (allomone)[45][46] communication. Mesofauna are also involved in chemical signalling with plants, in particular in parasitic forms (e. g. root-feeder nematodes). Interesting parallels between nematode-plant chemical interactions and plant-fungal symbioses (mycorrhizae) have been suggested.[47]
Because of their physiological and locomotory dependence to pore water microfauna are very sensitive to moisture fluctuations.[48] Variations in population size of active forms (e.g. protozoan trophozoites) are correlated with variations in soil moisture along precipitation cycles.[49][50] However, resistant life-cycle cryptobiotic stages (e.g. protozoan resting cysts, nematode dauer larva, rotifer anhydrobiotes, tardigrade tuns), allow them to stay and wait for better conditions, restoring fully active metabolism with a few hours.[51][52][53] It can thus be postulated that, contrary to most other soil invertebrates, soil microfauna will not suffer to a critical extent from climate warming,[54] while they are highly sensitive to other man-induced global changes such as acid rains.[55]
Although sexual reproduction (including sexual conjugation) is widespread in microfauna, allowing rapid adaptation (by genetic recombination) to environmental heterogeneity both in space[56] and time,[57] asexual reproduction (e.g. parthenogenesis, fission) is commonplace in protozoa (amoebae and flagellates),[58] nematodes,[59] rotifers,[60] and tardigrades,[61] allowing them to rapidly exploit new or temporary environments[62] or new hosts for parasites.[63] Infestation of female gonads by bacteria belonging to the genus Wolbachia, hereditary transmitted through the germline, has been found to be responsible for the loss of sexual reproduction and shift to parthenogenesis in some lineages of parasitic nematodes.[64]
Soil mesofauna
Soil mesofauna are invertebrates between 0.2 mm and 2 mm in size, which live in the soil or in a leaf litter layer on the soil surface. Members of this group include microarthropods (mites, springtails (collembola), proturans, diplurans, pseudoscorpions, symphyla, pauropods), and enchytraeids (potworms).[65] By their intense consumption of plant remains (detritophagy) and microorganisms (microbivory) they play an important part in the carbon cycle and by their sentitivity to environmental hazards they are likely to be adversely affected by climate and land use change, and agricultural intensification.[66]
Soil mesofauna feed on a wide range of materials including other soil animals, microorganisms (bacteria, archaea, fungi, algae), live or decaying plant material, lichens, spores, and pollen.[67] Soil microarthropods play a negligible role in soil bioturbation and soil pore formation,[68] but enchytraeids dig the soil and create galleries in which they deposit their faeces, giving them the rank of ecosystem engineers in soils (or in times) with poor earthworm activity.[69] In addition to abovementioned food resources common to mesofauna, oribatid mites and springtails feed on decaying root material, a now fully recognized prominent food source for soil mesofauna.[70] The fecal material of soil macrofauna (e. g. earthworm casts) is eaten and broken down by mesofauna.[71] Earthworm casts are pulverized by enchytraeids eating on them,[72], exemplifying the dynamic nature of soil aggregates[73] and suggesting some kind of competition between two co-occurring ecosystem engineers of quite different size.[74] Contrary to microfauna the bigger size of mesofauna does not allow them to graze bacteria, which they consume together with organic and/or mineral matter while feeding on decaying plant material or animal faeces.[75] Fungal hyphae and spores are actively consumed by microarthropods and enchytraeids, giving them a prominent place in the regulation of fungal communities, including mycorrhizal fungi.[76][77] Fungal-feeding mesofauna play both a positive (through dissemination of spores and hyphal fragments)[78] and a negative role (through severing connections)[79] in mycorrhization and more generally in the development of soil fungal colonies and their ecosystem services (e.g. decomposition).[80] Predatory species (e. g. mesostimatid mites, pseudoscorpions) eat mainly on springtails, which are also submitted to an active predation from macrofauna (e. g. centipedes, ground beetles, spiders), making springtails, with their high reproductive rate and large populations, a pivotal component of soil food webs,[81] mediating indirect effects of predation on soil ecosystem services.[82] However it has been shown that mesofauna customarily classified as saprophagous or microbivorous ingest also occasionally some animal prey (e. g. nematodes, protozoa, rotifers, tardigrades, small enchytraeids).[83][84]
Contrary to enchytraeids, soil microarthropods do not have the ability to reshape the soil and, therefore, are forced to use the existing macropore network for their locomotion and access to food resources.[85] This makes them highly sensitive to soil compaction,[86] as it occurs under the influence of agricultural[87] and sylvicultural intensification.[88] Most species of soil mesofauna are susceptible to environmental changes through direct (e.g. plant litter quality,[89] soil acidity,[90] pollution,[91] microclimate)[92] and indirect (e.g. dispersal limitation,[93] predation)[94] influences. Some frost- and drought-resistant life forms exist, allowing mesofana to await for better conditions, such as coccoons in enchytraeids,[95] diapausing eggs in Collembola.[96] Environmental heterogeneity is often reflected in the species composition of mesofaunal communities,[97] making these animals good bioindicators of soil quality.[98] However, they cannot track environmental changes when these are too rapid and in excess of their limited dispersal capacity, or when the landscape is fragmented in patches and inhospitable matrices cannot be crossed.
Mesofauna reproduce in a variety of ways. potworms can reproduce both sexually and asexually, by fragmentation (fission) and subsequent regeneration as in the widespreaad Cognettia sphagnetorum.[99] Microarthropod species of soil mesofauna such as thrips and pauropods reproduce by parthenogenesis. Diplurians, springtails and mites reproduce sexually, but some species of can reproduce by parthenogenesis, in particular those living deep in the soil.
Soil macrofauna
Soil Macrofauna, earthworms, termites, ants, and some insect larvae, can make the pore spaces and hence can change the soil porosity,[100] one aspect of soil morphology.
Soil megafauna
References
- ^ Anthony, Mark A.; Bender, S. Franz; Van der Heijden, Marcel G. A. (7 August 2023). "Enumerating soil biodiversity" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 120 (33): e2304663120. doi:10.1073/pnas.2304663120. Retrieved 30 July 2025.
- ^ Cheruy, Frédérique; Dufresne, Jean-Louis; Mesbah, S. Aït; Grandpeix, Jean-Yves; Wang, Fuxing (December 2017). "Role of soil thermal inertia in surface temperature and soil moisture-temperature feedback". Journal of Advances in Modeling Earth Systems. 9 (8): 2906–19. doi:10.1002/2017MS001036.
- ^ Karban, Richard; Grof-Tisza, Patrick; McMunn, Marshall; Kharouba, Heather; Huntzinger, Mikaela (1 December 2015). "Caterpillars escape predation in habitat and thermal refuges". Ecological Entomology. 40 (6): 725–31. doi:10.1111/een.12243.
- ^ Potapov, Anton A.; Beaulieu, Frédéric; Birkhofer, Klaus; Bluhm, Sarah L.; Degtyarev, Maxim I.; Devetter, Miloslav; Goncharoov, Anton A.; Gongalsky, Konstantin B.; Klarner, Bernhard; Korobushkin, Daniil I.; Liebke, Dana F.; Maraun, Mark; McDonnell, Rory J.; Pollierer, Melanie M.; Schaefer, Ina; Shrubovych, Julia; Semenyuk, Irina I.; Sendra, Alberto; Tuma, Jiri; Tůmová, Michala; Vassilieva, Anna B.; Chen, Ting-Wen; Geisen, Stefan; Schmidt, Olaf; Tiunov, Alexei V.; Scheu, Stefan (June 2022). "Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates". Biological Reviews. 97 (3): 1057–117. doi:10.1111/brv.12832.
- ^ Herzberg, Fred; Herzberg, Anne (October 1962). "Observations on reproduction in Helix aspersa". American Midland Naturalist. 68 (2): 297–306. doi:10.2307/2422735. Retrieved 31 July 2025.
- ^ Ellers, Jacintha; Berg, Matty B.; Dias, André T. C.; Fontana, Simone; Ooms, Astra; Moretti, Marco (July 2018). "Diversity in form and function: vertical distribution of soil fauna mediates multidimensional trait variation". Journal of Animal Ecology. 87 (4): 933–44. doi:10.1111/1365-2656.12838.
- ^ Ponge, Jean-François; Dubs, Florence; Gillet, Servane; Sousa, José Paulo; Lavelle, Patrick (May 2006). "Decreased biodiversity in soil springtail communities: the importance of dispersal and landuse history in heterogeneous landscapes". Soil Biology and Biochemistry. 38 (5): 1158–61. doi:10.1016/j.soilbio.2005.09.004. Retrieved 31 July 2025.
- ^ Vannier, Guy (February 1987). "The porosphere as an ecological medium emphasized in Professor Ghilarov's work on soil animal adaptations". Biology and Fertility of Soils. 3 (1): 39–44. doi:10.1007/BF00260577. Retrieved 31 July 2025.
- ^ Aloui, Abdallah (2018). "Soil fauna". Retrieved 31 July 2025.
- ^ Woodward, Guy; Ebenman, Bo; Emmerson, Mark; Montoya, Jose M.; Olesen, Jens M.; Valido, Alfredo; Warren, Philip H. (July 2005). "Body size in ecological networks". Trends in Ecology and Evolution. 20 (7): 402–9. doi:10.1016/j.tree.2005.04.005. Retrieved 31 July 2025.
- ^ Lobry de Bruyn, Lisa; Conacher, Arthur J. (1990). "The role of termites and ants in soil modification: a review". Australian Journal of Soil Research. 28 (1): 55–93. doi:10.1071/SR9900055. Retrieved 1 August 2025.
- ^ Frouz, Jan (2024). "The role of earthworms in soil formation". In Kooch, Yahya; Kuzyakov, Yakov (eds.). Earthworms and ecological processes. Berlin, Germany: Springer Nature. pp. 323–39. doi:10.1007/978-3-031-64510-5_11. ISBN 978-3-031-64510-5. Retrieved 1 August 2025.
- ^ Reichman, O. J.; Seabloom, Eric W. (1 January 2002). "The role of pocket gophers as subterranean ecosystem engineers". Trends in Ecology & Evolution. 17 (11): 44–9. doi:10.1016/S0169-5347(01)02329-1. Retrieved 1 August 2025.
- ^ Xiao, Zhenggao; Wang, Xie; Koricheva, Julia; Kergunteuil, Alan; Le Bayon, Renée-Claire; Liu, Manqiang; Hu, Feng; Rasmann, Sergio (January 2018). "Earthworms affect plant growth and resistance against herbivores: a meta-analysis". Functional Ecology. 32 (1): 150–60. doi:10.1111/1365-2435.12969.
- ^ Khan, Mohiuddin Aslam; Ahmad, Wasim; Paul, Bishwajeet (20 February 2018). "Ecological impacts of termites". In Khan, Mohiuddin Aslam; Ahmad, Wasim (eds.). Termites and sustainable management, Volume 1, Biology, social behaviour and economic importance. Berlin, Germany: Springer Nature. pp. 201–16. doi:10.1007/978-3-319-72110-1_10. ISBN 978-3-319-72110-1. Retrieved 1 August 2025.
- ^ Huntly, Nancy; Inouye, Richard (December 1988). "Pocket gophers in ecosystems: patterns and mechanisms". BioScience. 38 (11): 786–93. doi:10.2307/1310788. Retrieved 1 August 2025.
- ^ Briones, Maria J. I. (7 December 2018). "The serendipitous value of soil fauna in ecosystem functioning: the unexplained explained". Frontiers in Environmental Science. 6: 149. doi:10.3389/fenvs.2018.00149.
- ^ Scheu, Stefan (February 2002). "The soil food web: structure and perspectives". European Journal of Soil Biology. 38 (1): 11–20. doi:10.1016/S1164-5563(01)01117-7. Retrieved 1 August 2025.
- ^ Lou, Xuliang; Zhao, Jianming; Lou, Xiangyang; Xia, Xiejiang; Feng, Yilu; Li, Hongjie (10 January 2022). "The biodegradation of soil organic matter in soil-dwelling humivorous fauna". Frontiers in Bioengineering and Biotechnology. 9: 808075. doi:10.3389/fbioe.2021.808075.
- ^ da Silva Correia, Dayana; Ribeiro Passos, Samuel; Neves Proença, Diogo; Vasconcelos Morais, Paula; Ribeiro Xavier, Gustavo; Fernandes Correia, Maria Elizabeth (October 2018). "Microbial diversity associated to the intestinal tract of soil invertebrates". Applied Soil Ecology. 131: 38–46. doi:10.1016/j.apsoil.2018.07.009. Retrieved 1 August 2025.
- ^ Martin, Agnès; Marinissen, J. C. Y. (1993). "Biological and physico-chemical processes in excrements of soil animals". Geoderma. 56 (1): 331–47. doi:10.1016/B978-0-444-81490-6.50031-5. Retrieved 1 August 2025.
- ^ Foster, R. C. (May 1988). "Microenvironments of soil microorganisms". Biology and Fertility of Soils. 6 (3): 189–203. doi:10.1007/BF00260816. Retrieved 1 August 2025.
- ^ Dighton, John; Jones, Helen E.; Robinson, Clare H.; Beckett, John (May 1997). "The role of abiotic factors, cultivation practices and soil fauna in the dispersal of genetically modified microorganisms in soils". Applied Soil Ecology. 5 (2): 109–31. doi:10.1016/S0929-1393(96)00137-0. Retrieved 1 August 2025.
- ^ Bardgett, Richard D.; Keiller, S.; Cook, R.; Gilburn, André S. (15 April 1998). "Dynamic interactions between soil animals and microorganisms in upland grassland soils amended with sheep dung: a microcosm experiment". Soil Biology and Biochemistry. 30 (4): 531–9. doi:10.1016/S0038-0717(97)00146-6. Retrieved 1 August 2025.
- ^ McSorley, Robert; Walter, David E. (15 February 1991). "Comparison of soil extraction methods for nematodes and microarthropods". Agriculture, Ecosystems & Environment. 34 (1–4): 201–7. doi:10.1016/0167-8809(91)90106-8. Retrieved 4 August 2025.
- ^ Singh, Jaswinder; Singh, Sharanpreet; Vig, Adarsh Pal (26 August 2015). "Extraction of earthworm from soil by different sampling methods: a review". Environment, Development and Sustainability. 18 (6): 1521–39. doi:10.1007/s10668-015-9703-5. Retrieved 4 August 2025.
- ^ Spence, John R.; Niemelä, Jari K. (31 May 2012). "Sampling carabid assemblages with pitfall traps: the madness and the method". The Canadian Entomologist. 126 (3): 881–94. doi:10.4039/Ent126881-3. Retrieved 4 August 2025.
- ^ Woomer, Paul Lester; Swift, Michael J. (1995). Biology and fertility of tropical soils : report of the Tropical Soil Biology and Fertility Programme (TSBF) 1994. Nairobi, Kenya: Tropical Soil Biology and Fertility. Retrieved 4 August 2025.
- ^ Artois, Tom; Fontaneto, Diego; Hummon, William D.; McInnes, Sandra J.; Todaro, M. Antonio; Sørensen, Martin V.; Zullini, Aldo (August 2012). "Ubiquity of microscopic animals? Evidence from the morphological approach in species identification". In Fontaneto, Diego (ed.). Biogeography of microscopic organisms: is everything small everywhere?. Cambridge, United Kingdom: Cambridge University Press. pp. 244–83. doi:10.1017/CBO9780511974878.014. ISBN 978-0511974878. Retrieved 4 August 2025.
- ^ Orgiazzi, Alberto; Bonnet Dunbar, Martha; Panagos, Panos; De Groot, Gerard Arjen; Lemanceau, Philippe (January 2015). "Soil biodiversity and DNA barcodes: opportunities and challenges". Soil Biology and Biochemistry. 80: 244–50. doi:10.1016/j.soilbio.2014.10.014. Retrieved 5 August 2025.
- ^ Floyd, Robin; Abebe, Eyualem; Papert, Artemis; Blaxter, Mark (April 2002). "Molecular barcodes for soil nematode identification". Molecular Ecology. 11 (4): 839–50. doi:10.1046/j.1365-294X.2002.01485.x. Retrieved 5 August 2025.
- ^ Gamit, Amit; Amin, Dhruti (20 March 2024). "DNA barcoding techniques for protists". In Amaresan, Natarajan; Chandarana, Komal A. (eds.). Practical handbook on soil protists. Springer protocols handbooks. New York, New York: Humana. pp. 165–73. doi:10.1007/978-1-0716-3750-0_29. ISBN 978-1-0716-3750-0. ISSN 1949-2456. Retrieved 5 August 2025.
- ^ Rougerie, Rodolphe; Decaëns, Thibaud; Deharveng, Louis; Porco, David; James, Sam W.; Chang, Chih-Han; Richard, Benoit; Potapov, Mikhail; Suhardjono, Yayuk; Hebert, Paul D. N. (August 2009). "DNA barcodes for soil animal taxonomy". Pesquisa Agropecuaria Brasileira. 44 (8): 789–801. doi:10.1590/S0100-204X2009000800002.
- ^ Fernández Marchán, Daniel; Díaz Cosín, Darío J.; Novo, Marta (March–April 2018). "Why are we blind to cryptic species? Lessons from the eyeless". European Journal of Soil Biology. 86: 49–51. doi:10.1016/j.ejsobi.2018.03.004. Retrieved 5 August 2025.
- ^ Anderson, Jonathan M. (May 1988). "Spatiotemporal effects of invertebrates on soil processes". Biology and Fertility of Soils. 6 (3): 216–27. doi:10.1007/BF00260818. Retrieved 5 August 2025.
- ^ Bonkowski, Michael; Cheng, Weixin; Griffiths, Bryan S.; Alphei, Jörn; Scheu, Stefan (July 2000). "Microbial-faunal interactions in the rhizosphere and effects on plant growth". European Journal of Soil Biology. 36 (3–4): 135–47. doi:10.1016/S1164-5563(00)01059-1. Retrieved 5 August 2025.
- ^ Mamilov, Anvar Sh.; Byzov, B. A.; Pokarzhevskii, A. D.; Zvyagintsev, Dmitrii Grigor’evich (September 2000). "Regulation of the biomass and activity of soil microorganisms by microfauna". Microbiology. 69 (5): 612–21. doi:10.1007/BF02756818. Retrieved 5 August 2025.
- ^ Nadarajah, Kalaivani (July 2019). "Soil health: the contribution of microflora and microfauna". In Varma, Ajit; Choudhary, Devendra K. (eds.). Mycorrhizosphere and pedogenesis. Singapore, Singapore: Springer. pp. 383–400. ISBN 978-981-13-6480-8. Retrieved 6 August 2025.
- ^ Bonkowski, Michael; Clarholm, Marianne (20 December 2012). "Stimulation of plant growth through interactions of bacteria and protozoa: testing the auxiliary microbial loop hypothesis". Acta Protozoologica. 51 (3): 237–47. doi:10.4467/16890027AP.12.019.0765.
- ^ Clarholm, Marianne (September 1994). "The microbial loop in the soil". In Ritz, Karl; Dighton, John; Giller, Ken E. (eds.). Beyond the biomass: compositional and functional analysis of soil microbial communities. Chichester, United Kingdom: John Wiley & Sons. pp. 221–30. ISBN 978-0471950967.
- ^ Clarholm, Marianne (January 1985). "Possible roles for roots, bacteria, protozoa and fungi in supplying nitrogen to plants". In Fitter, Alastair H.; Atkinson, David; Read, David J.; Usher, Michael B. (eds.). Ecological interactions in soil: plants, microbes and animals. Oxford, United Kingdom: Blackwell Scientific Publications. pp. 355–65. ISBN 978-0-632-01386-9. Retrieved 5 August 2025.
- ^ Willard, Stacey S.; Devreotes, Peter N. (27 September 2006). "Signaling pathways mediating chemotaxis in the social amoeba, Dictyostelium discoideum". European Journal of Cell Biology. 85 (9–10): 897–904. doi:10.1016/j.ejcb.2006.06.003. Retrieved 6 August 2025.
- ^ Butcher, Rebecca A. (7 April 2017). "Decoding chemical communication in nematodes". Natural Product Reports. 34 (5): 472–7. doi:10.1039/C7NP00007C. Retrieved 6 August 2025.
- ^ Chartrain, Justine; Knott, K. Emily; Michalczyk, Łukasz; Calhim, Sara (22 September 2023). "First evidence of sex-specific responses to chemical cues in tardigrade mate searching behaviour". Journal of Experimental Biology. 226 (18): 245836. doi:10.1242/jeb.245836.
- ^ Wang, Jie; Guo, Changying; Wei, Xiaoli; Pu, Xiaojian; Zhao, Yuanyuan; Xu, Chengti; Wang, Wei (20 March 2025). "GPCR sense communication among interaction nematodes with other organisms". International Journal of Molecular Sciences. 26 (6): 2822. doi:10.3390/ijms26062822.
- ^ Song, Chunxu; Mazzola, Mark; Cheng, Xu; Oetjen, Janina; Alexandrov, Theodore; Dorrestein, Pieter; Watrous, Jeramie; Van der Voort, Menno; Raaijmakers, Jos M. (6 August 2015). "Molecular and chemical dialogues in bacteria-protozoa interactions". Scientific Reports. 5: 12837. doi:10.1038/srep12837.
- ^ Bird, David McK. (August 2004). "Signaling between nematodes and plants". Current Opinion in Plant Biology. 7 (4): 372–6. doi:10.1016/j.pbi.2004.05.005. Retrieved 6 August 2025.
- ^ Bouwman, Luitjen Albert; Zwart, Kor B. (November 1994). "The ecology of bacterivorous protozoans and nematodes in arable soil". Agriculture, Ecosystems & Environment. 51 (1–2): 145–60. doi:10.1016/0167-8809(94)90040-X. Retrieved 7 August 2025.
- ^ McSorley, Robert (September 1997). "Relationship of crop and rainfall to soil nematode community structure in perennial agroecosystems". Applied Soil Ecology. 6 (2): 147–59. doi:10.1016/S0929-1393(97)00001-2. Retrieved 7 August 2025.
- ^ Bischoff, Paul J. (2002). "An analysis of the abundance, diversity and patchiness of terrestrial gymnamoebae in relation to soil depth and precipitation events following a drought in southeastern U.S.A." Acta Protozoologica. 41 (2): 183–9. Retrieved 7 August 2025.
- ^ Verni, Franco; Rosati, Giovanna (4 April 2011). "Resting cysts: a survival strategy in Protozoa Ciliophora". Italian Journal of Zoology. 78 (2): 134–45. doi:10.1080/11250003.2011.560579.
- ^ Houthoofd, Koen; Braeckman, Bart P.; Lenaerts, Isabelle; Brys, Kristel; De Vreese, Annemie; Van Eygen, Sylvie; Vanfleteren, Jacques R. (9 August 2002). "Ageing is reversed, and metabolism is reset to young levels in recovering dauer larvae of C. elegans". Experimental Gerontology. 37 (8–9): 1015–21. doi:10.1016/S0531-5565(02)00063-3. Retrieved 8 August 2025.
- ^ Caprioli, Manuela; Ricci, Claudia (March 2001). "Recipes for successful anhydrobiosis in bdelloid rotifers". Hydrobiologia. 446 (1): 13–17. doi:10.1023/A:1017556602272. Retrieved 8 August 2025.
- ^ Rebecchi, Lorena; Boschetti, Chiara; Nelson, Diane R. (16 December 2019). "Extreme-tolerance mechanisms in meiofaunal organisms: a case study with tardigrades, rotifers and nematodes". Hydrobiologia. 847: 2779–99. doi:10.1007/s10750-019-04144-6. Retrieved 8 August 2025.
- ^ Zhou, Juan; Wu, Jianping; Huang, Jingxing; Sheng, Xiongjie; Dou, Xiaolin; Lu, Meng (February 2022). "A synthesis of soil nematode responses to global change factors". Soil Biology and Biochemistry. 165: 108538. doi:10.1016/j.soilbio.2021.108538. Retrieved 8 August 2025.
- ^ Becks, Lutz; Agrawal, Aneil F. (13 October 2010). "Higher rates of sex evolve in spatially heterogeneous environments". Nature. 468 (7320): 89–92. doi:10.1038/nature09449. Retrieved 11 August 2025.
- ^ Crow, James F. (June 1992). "An advantage of sexual reproduction in a rapidly changing environment". Journal of Heredity. 83 (3): 169–73. doi:10.1093/oxfordjournals.jhered.a111187. Retrieved 11 August 2025.
- ^ Hawes, R. S. J. (September 1963). "The emergence of asexuality in protozoa". The Quarterly Review of Biology. 38 (3): 234–42. doi:10.1086/403859. Retrieved 8 August 2025.
- ^ Schratzberger, Michaela; Holterman, Martijn; Van Oevelen, Dick; Helder, Johannes (November 2019). "A worm's world: ecological flexibility pays off for free-living nematodes in sediments and soils". BioScience. 69 (11): 867–76. doi:10.1093/biosci/biz086.
- ^ Birky, C. William Jr; Gilbert, John J. (May 1971). "Parthenogenesis in rotifers: the control of sexual and asexual reproduction". American Zoologist. 11 (2): 245–66. doi:10.1093/icb/11.2.245. Retrieved 8 August 2025.
- ^ Sugiura, Kenta; Matsumoto, Midori (22 November 2021). "Sexual reproductive behaviours of tardigrades: a review". Invertebrate Reproduction and Development. 65 (4): 279–87. doi:10.1080/07924259.2021.1990142.
- ^ Warren, Robert J. II; Mokadam, Chloe (29 November 2024). "Asexuality and species invasion". Biodiversity and Conservation. 34 (1): 29–43. doi:10.1007/s10531-024-02976-w. Retrieved 11 August 2025.
- ^ Gibson, Amanda K. (December 2019). "Asexual parasites and their extraordinary host ranges". Integrative and Comparative Biology. 59 (6): 1463–84. doi:10.1093/icb/icz075. Retrieved 11 August 2025.
- ^ Haegeman, Annelies; Vanholme, Bartel; Jacob, Joachim; Vandekerckhove, Tom T. M.; Claeys, Myriam; Borgonie, Gaetan; Gheysen, Godelieve (15 July 2009). "An endosymbiotic bacterium in a plant-parasitic nematode: member of a new Wolbachia supergroup". International Journal for Parasitology. 39 (9): 1045–54. doi:10.1016/j.ijpara.2009.01.006. Retrieved 11 August 2025.
- ^ "A chaos of delight". A Chaos of Delight. Retrieved 11 August 2025.
- ^ Remelli, Sara; Ghobari, Hamed; Oliveira Filho, Luís Carlos Iunes (16 April 2024). "The role of soil mesofauna as indicators of sustainable ecosystem management plans". Frontiers in Ecology and Evolution. 12: 1400232. doi:10.3389/fevo.2024.1400232.
- ^ Potapov, Anton M.; Beaulieu, Frédéric; Birkhofer, Klaus; Bluhm, Sarah L.; Degtyarev, Maxim I.; Devetter, Miloslav; Goncharov, Anton A.; Gongalsky, Kinstantin B.; Klarner, Bernhard; Korobushkin, Daniil I.; Liebke, Dana F.; Maraun, Mark; McDonnell, Rory J.; Pollierer, Melanie M.; Schaefer, Ina; Shrubovych, Julia; Semenyuk, Irina I.; Sendra, Alberto; Tuma, Jiri (June 2022). "Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates". Biological Reviews. 97 (3): 1057–1117. doi:10.1111/brv.12832.
- ^ Lee, Kenneth Ernest; Foster, R. C. (1991). "Soil fauna and soil structure". Australian Journal of Soil Research. 29 (6): 745–75. doi:10.1071/SR9910745. Retrieved 12 August 2025.
- ^ Serbource, Cécile; Sammartino, Stéphane; Cornu, Sophie; Papillon, Justine; Adrien, Jérôme; Pelosi, Céline (January 2025). "Enchytraeids: small but important ecosystem engineers". Geoderma. 453: 117150. doi:10.1016/j.geoderma.2024.117150. Retrieved 12 August 2025.
- ^ Bluhm, Sarah L.; Eitzinger, Bernhard; Bluhm, Christian; Ferlian, Olga; Heidemann, Kerstin; Ciobanu, Marcel; Maraun, Mark; Scheu, Stefan (4 March 2021). "The impact of root-derived resources on forest soil invertebrates depends on body size and trophic position". Frontiers in Forests and Global Change. 4. doi:10.3389/ffgc.2021.622370.
- ^ Salmon, Sandrine (17 September 2004). "The impact of earthworms on the abundance of Collembola: improvement of food resources or of habitat?". Biology and Fertility of Soils. 40 (5): 323–33. doi:10.1007/s00374-004-0782-y. Retrieved 12 August 2025.
- ^ Babel, Ulrich (1975). "Micromorphology of soil organic matter". In Gieseking, John E. (ed.). Soil components, Volume 1, Organic components. Berlin, Germany: Springer-Verlag. pp. 369–473. doi:10.1007/978-3-642-65915-7_7. ISBN 978-3-540-06861-7. Retrieved 12 August 2025.
- ^ Lehmann, Johannes; Kleber, Markus (23 November 2015). "The contentious nature of soil organic matter". Nature. 528 (7580): 60–8. doi:10.1038/nature16069. Retrieved 12 August 2025.
- ^ Domínguez, Anahi; Bedano, José Camilo (March–April 2016). "Earthworm and enchytraeid co-occurrence pattern in organic and conventional farming: consequences for ecosystem engineering" (PDF). Soil Science. 181 (3–4): 148–56. doi:10.1097/SS.0000000000000146. Retrieved 12 August 2025.
- ^ Saur, Étienne; Ponge, Jean-François (September 1988). "Alimentary studies on the Collembolan Paratullbergia callipygos using transmission electron microscopy". Pedobiologia. 31 (5–6): 355–80. doi:10.1016/S0031-4056(23)02274-6. Retrieved 13 August 2025.
- ^ Hernández-Santiago, Faustino; Díaz-Aguilar, Irma; Pérez-Moreno, Jesús; Tovar-Salinas, Jorge L. (29 April 2020). "Interactions between soil mesofauna and edible ectomycorrhizal mushrooms". In Pérez-Moreno, Jesús; Guerin-Laguette, Alexis; Arzú, Roberto Flores; Yu, Fu-Qiang (eds.). Mushrooms, humans and nature in a changing world. Cham, Switzerland: Springer Nature. pp. 367–405. doi:10.1007/978-3-030-37378-8_14. ISBN 978-3-030-37378-8. Retrieved 13 August 2025.
- ^ Hedlund, Katarina; Augustsson, Annakarin (July 1995). "Effects of enchytraeid grazing on fungal growth and respiration". Soil Biology and Biochemistry. 27 (7): 905–9. doi:10.1016/0038-0717(95)00016-8. Retrieved 13 August 2025.
- ^ Seres, Anikó; Bakonyi, Gabor; Posta, Katalin (January 2007). "Collembola(Insecta) disperse the arbuscular mycorrhizal fungi in the soil: pot experiment". Polish Journal of Ecology. 55 (2): 395–9. Retrieved 13 August 2025.
- ^ Johnson, David; Krsek, Martin; Wellington, Elizabeth M. H.; Stott, Andrew W.; Cole, Lisa; Bardgett, Richard D.; Read, David J.; Leake, Jonathan R. (12 August 2005). "Soil invertebrates disrupt carbon flow through fungal networks". Science. 309 (5737): 1047. doi:10.1126/science.1114769. Retrieved 13 August 2025.
- ^ Lenoir, Lisette; Persson, Tryggve; Bengtsson, Jan; Wallander, Håkan; Wirén, Anders (26 April 2006). "Bottom–up or top–down control in forest soil microcosms? Effects of soil fauna on fungal biomass and C/N mineralisation". Biology and Fertility of Soils. 43 (3): 281–94. doi:10.1007/s00374-006-0103-8. Retrieved 14 August 2025.
- ^ Scheu, Stefan (February 2002). "The soil food web: structure and perspectives". European Journal of Soil Biology. 38 (1): 11–20. doi:10.1016/S1164-5563(01)01117-7. Retrieved 14 August 2025.
- ^ Lawrence, Kendra L.; Wise, David H. (2000). "Spider predation on forest-floor Collembola and evidence for indirect effects on decomposition". Pedobiologia. 44 (1): 33–9. doi:10.1078/S0031-4056(04)70026-8. Retrieved 14 August 2025.
- ^ Chernova, Nina Mikhailovna; Bokova, Anna I.; Varshav, E. V.; Goloshchapova, N. P.; Savenkova, Yu. Yu. (November 2007). "Zoophagy in Collembola". Entomological Review. 87 (7): 799–811. doi:10.1134/S0013873807070020. Retrieved 14 August 2025.
- ^ Velazco, Víctor Nicolás; Saravia, Leonardo Ariel; Coviella, Carlos Eduardo; Falco, Liliana Beatriz (October 2023). "Trophic resources of the edaphic microarthropods: a worldwide review of the empirical evidence". Helyon. 9 (10): e20439. doi:10.1016/j.heliyon.2023.e20439.
- ^ Lu, Jing-Zhong; Zarebanadkouki, Mohsen; Schlüter, Steffen; Pollierer, Melanie M.; Scheu, Stefan; Nunan, Naoise; Erktan, Amandine (3 August 2024). "Location in soil pores as determinant of resource accessibility for microarthropods". Retrieved 14 August 2025.
- ^ Larsen, Thomas; Schjønning, Per; Axelsen, Jørgen (July 2004). "The impact of soil compaction on euedaphic Collembola". Applied Soil Ecology. 26 (3): 273–81. doi:10.1016/j.apsoil.2003.12.006. Retrieved 14 August 2025.
- ^ Hamza, Mohieddinne A.; Anderson, Walter K. (June 2005). "Soil compaction in cropping systems: a review of the nature, causes and possible solutions". Soil and Tillage Research. 82 (2): 121–45. doi:10.1016/j.still.2004.08.009. Retrieved 15 August 2025.
- ^ Nazari, Meisam; Eteghadipour, Mohammad; Zarebanadkouki, Mohsen; Ghorbani, Mohammad; Dippold, Michaela A.; Bilyera, Nataliya; Zamanian, Kazem (3 December 2021). "Impacts of logging-associated compaction on forest soils: a meta-analysis". Frontiers in Forests and Global Change. 4. doi:10.3389/ffgc.2021.780074.
- ^ Ilieva-Makulec, Krassimira; Olejniczak, Izabella; Szanser, Maciej (November 2006). "Response of soil micro- and mesofauna to diversity and quality of plant litter". European Journal of Soil Biology. 42 (Supplementum 1): 5244–9. doi:10.1016/j.ejsobi.2006.07.030. Retrieved 18 August 2025.
- ^ Loranger, Gladys; Bandyopadhyaya, Ipsa; Razaka, Barbara; Ponge, Jean-François (March 2001). "Does soil acidity explain altitudinal sequences in collembolan communities?". Soil Biology and Biochemistry. 33 (3): 381–93. doi:10.1016/S0038-0717(00)00153-X. Retrieved 18 August 2025.
- ^ Kapusta, Paweł; Sobczyk, Łukasz (1 December 2015). "Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions". Science of the Total Environment. 536: 517–26. doi:10.1016/j.scitotenv.2015.07.086. Retrieved 18 August 2025.
- ^ Heiniger, Charlène; Barot, Sébastien; Ponge, Jean-François; Salmon, Sandrine; Meriguet, Jacques; Carmignac, David; Suillerot, Margot; Dubs, Florence (July 2015). "Collembolan preferences for soil and microclimate in forest and pasture communities". Soil Biology and Biochemistry. 86: 181–92. doi:10.1016/j.soilbio.2015.04.003. Retrieved 18 August 2025.
- ^ Ponge, Jean-François; Dubs, Florence; Gillet, Servane; Sousa, José Paulo; Lavelle, Patrick (May 2006). "Decreased biodiversity in soil springtail communities: the importance of dispersal and landuse history in heterogeneous landscapes". Soil Biology and Biochemistry. 38 (5): 1158–61. doi:10.1016/j.soilbio.2005.09.004. Retrieved 18 August 2025.
- ^ Salmon, Sandrine; Geoffroy, Jean-Jacques; Ponge, Jean-François (March 2005). "Earthworms and collembola relationships: effects of predatory centipedes and humus forms". Soil Biology and Biochemistry. 37 (3): 487–95. doi:10.1016/j.soilbio.2004.08.011. Retrieved 18 August 2025.
- ^ Bauer, Roswitha (June–December 2002). "Survival of frost and drought conditions in the soil by enchytraeids (Annelida; Oligochaeta) in Arctic, subalpine and temperate areas". European Journal of Soil Biology. 38 (3–4): 251–4. doi:10.1016/S1164-5563(02)01154-8. Retrieved 18 August 2025.
- ^ Leinaas, Hans Petter; Bleken, Erik (May 1983). "Egg diapause and demographic strategy in Lepidocyrtus lignorum Fabricius (Collembola; Entomobryidae)". Oecologia. 58 (2): 194–9. doi:10.1007/BF00399216. Retrieved 18 August 2025.
- ^ Salmon, Sandrine; Ponge, Jean-François; Gachet, Sophie; Deharveng, Louis; Lefebvre, Noella; Delabrosse, Florian (August 2014). "Linking species, traits and habitat characteristics of Collembola at European scale". Soil Biology and Biochemistry. 75: 73–85. doi:10.1016/j.soilbio.2014.04.002. Retrieved 18 August 2025.
- ^ George, Paul B. L.; Keith, Aidan M.; Creer, Simon; Barrett, Gaynor L.; Lebron, Inma; Emmett, Bridget A.; Robinson, David A.; Jones, David L. (December 2017). "Evaluation of mesofauna communities as soil quality indicators in a national-level monitoring programme" (PDF). Soil Biology and Biochemistry. 115: 537–46. doi:10.1016/j.soilbio.2017.09.022. Retrieved 18 August 2025.
- ^ Sjögren, Maria; Augustsson, Annakarin; Rundgren, Sten (May 1995). "Dispersal and fragmentation of the enchytraeid Cognettia sphagnetorum in metal polluted soil". Pedobiologia. 39 (3): 207–18. doi:10.1016/S0031-4056(24)00199-9. Retrieved 15 August 2025.
- ^ Sparks, Donald (2017). Advances in Agronomy. City: Academic Pr. ISBN 978-0-12-812415-4.