1,7-Octadiene

1,7-Octadiene
Names
Preferred IUPAC name
Octa-1,7-diene
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.020.959
EC Number
  • 223-054-9
RTECS number
  • RG5250000
UNII
UN number 2309
  • InChI=1S/C8H14/c1-3-5-7-8-6-4-2/h3-4H,1-2,5-8H2
    Key: XWJBRBSPAODJER-UHFFFAOYSA-N
  • C=CCCCCC=C
Properties
C8H14
Molar mass 110.200 g·mol−1
Appearance Colorless liquid
Density 0.746 g/mL at 25 °C
Boiling point 114–121 °C (237–250 °F; 387–394 K)
Hazards
GHS labelling:
GHS02: FlammableGHS08: Health hazardGHS09: Environmental hazard
Danger
H225, H304, H410, H412
P210, P233, P240, P241, P242, P243, P280, P303+P361+P353, P370+P378, P403+P235, P501
Related compounds
Related alkenes
and dienes
Isoprene
Chloroprene
Related compounds
Butane
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

1,7-Octadiene is an organic compound with the formula (CH2=CHCH2CH2)2. It is a colorless liquid that serves as a precursor to specialty polymers. It arises commercially by the dimerization of butadiene in the presence of hydrogen. Some of the 1,6-octadiene is also formed. 1,7-Octadiene can be converted to the diol by hydroformylation followed by hydrogenation of the dialdehyde. In a related process, 1,7-Octadiene undergoes hydrocyanation to give dinitrile, which can be hydrogenated to give 1,10-diaminodecane.[1]

Conversion of butadiene to 1,10-difunctionalized decanes

Dimethyloctadienes

Structurally related octadienes bearing two methyl groups are of commercial interest. Such compounds are produced by pyrolysis of pinane, which is abundantly available from terpentine or related wood-derived chemicals.[2]

Formation of dimethyloctadienes

Research

The diene has also been the subject of many research papers. For example, with ethylene it undergoes a cross-enyne metathesis Diels–Alder reaction.[3] It undergoes ring-closing metathesis to give cyclooctene.[4] Plasma polymerized 1,7-octadiene films deposited on silica can produce particles with tuned hydrophobicity.[5]

References

  1. ^ Dahlmann, Marc; Grub, Joachim; Löser, Eckhard (2011). "Butadiene". Ullmann's Encyclopedia of Industrial Chemistry. pp. 1–24. doi:10.1002/14356007.a04_431.pub2. ISBN 978-3-527-30673-2.
  2. ^ Sagorin, Gilles; Cazeils, Emmanuel; Basset, Jean-François; Reiter, Maud (2021). "From Pine to Perfume". CHIMIA. 75 (9): 780–787. doi:10.2533/chimia.2021.780. PMID 34526184.
  3. ^ Fustero, S; Bello, P; Miró, J; Simón, A; del Pozo, C (27 August 2012). "1,7-octadiene-assisted tandem multicomponent cross-enyne metathesis (CEYM)-Diels-Alder reactions: a useful alternative to Mori's conditions". Chemistry: A European Journal. 18 (35): 10991–7. doi:10.1002/chem.201200835. PMID 22851514.
  4. ^ Weskamp, Thomas; Schattenmann, Wolfgang C.; Spiegler, Michael; Herrmann, Wolfgang A. (1998). "A Novel Class of Ruthenium Catalysts for Olefin Metathesis". Angewandte Chemie International Edition. 37 (18): 2490–2493. doi:10.1002/(sici)1521-3773(19981002)37:18<2490::aid-anie2490>3.0.co;2-x. PMID 29711340.
  5. ^ Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter (November 2013). "Tuning the hydrophobicity of plasma polymer coated silica particles". Powder Technology. 249: 403–411. doi:10.1016/j.powtec.2013.09.018.